
Pushing Complexity
Down the Stack

Gregory Todd Williams
greg@evilfunhouse.com

Kjetil Kjernsmo
kjetil@kjernsmo.net

mailto:greg@evilfunhouse.com
mailto:kjetil@kjernsmo.net

Goal
• Allow low-level components to handle as much

complexity as possible

• Triple store knows more about the data: indexes,
structure, layout on disk

• Can likely execute partial queries (e.g. BGPs)
more efficiently than query engine

• How can we allow this with API design?

PerlRDF Project
• Old approach: More and more complex methods

• get_statements(
 s,	
 p,	
 o	
)	

• get_pattern(
 triples_and_filters	
)	

• get_sparql(
 query_string	
)	

• Query engine would probe triple stores for each of
these methods, delegate biggest sub-query
possible

Challenges

• Continually growing API

• Arbitrarily chosen granularity of each method  
(e.g. get_pattern handled BGPs and some filters)

• Both query planner and triple stores needed
updating to leverage each new method

New Approach
• Leverage Traits* to design flexible query planning

and triple store APIs

• Cleaner, more concise code with less copy-
pasting of functionality across the class hierarchy

• No requirement for shared superclasses

* http://scg.unibe.ch/research/traits/

http://scg.unibe.ch/research/traits/

Trait-based Design
• Two new trait-based systems:

• Attean
• In-progress PerlRDF rewrite
• Entirely new trait-based API

• SPARQLKit
• SPARQL 1.1 implementation in Objective-C*

Traits Example
• Simplest TripleStore:

• get_triples(s,p,o)	

• Trait provides default implementation:

• count_triples(s,p,o)	

• size(s,p,o)	

• Store may conform to other traits:

• MutableTripleStore, CacheableTripleStore,
BulkUpdatableStore, QueryPlanner

QueryPlanner Trait
• Participation in query planning:

• $plans	
 =	
 $store-­‐>plan(algebra);

• If store can efficiently execute an algebra, returns a
custom QueryPlan object which is preferred to other plans

• Simplifies and generalizes old API

• Similar to existing run-time approaches in SAIL API, and
information integration/wrapper systems, but providing
benefits of proper query plans

Challenges
• Plans should be comparable with an Auditable trait

and cost() method

• Structure of query algebra matters; may need more
flexible system for stores to choose only parts of an
algebra expression

• Extend(Filter(BGP())) vs.
Filter(Extend(BGP()))

Conclusions
• Trait-based design has yielded us many benefits:

• Simpler yet more powerful triple store implementations

• More flexible query planning (leading to more efficient plans)

• Smaller, more concise codebase

• Thank you

• Perl 
>	
 cpan	
 Attean	

• Debian	
 (unstable	
 and	
 testing*) 
>	
 apt-­‐get	
 install	
 libattean-­‐perl	

• irc.perl.org/#perlrdf

• http://www.perlrdf.org

• https://github.com/kasei/ {attean, sparqlkit}

http://irc.perl.org/#perlrdf
https://github.com/kasei/

